13 Red-Black Trees

Chapter 12 showed that a binary search tree of height / can support any of the basic
dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR, MINI-
MUM, MAXIMUM, INSERT, and DELETE—in O (k) time. Thus, the set operations
are fast if the height of the search tree is small. If its height is large, however, the
set operations may run no faster than with a linked list. Red-black trees are one
of many search-tree schemes that are “balanced” in order to guarantee that basic
dynamic-set operations take O(lgn) time in the worst case.

13.1 Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the node colors on
any simple path from the root to a leaf, red-black trees ensure that no such path is
more than twice as long as any other, so that the tree is approximately balanced.
Indeed, as we’re about to see, the height of a red-black tree with n keys is at most
21g(n + 1), which is O(Ign).

Each node of the tree now contains the attributes color, key, left, right, and p. If
a child or the parent of a node does not exist, the corresponding pointer attribute of
the node contains the value NIL. Think of these NILs as pointers to leaves (external
nodes) of the binary search tree and the normal, key-bearing nodes as internal nodes
of the tree.

A red-black tree is a binary search tree that satisfies the following red-black
properties:

1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.

332

Chapter 13 Red-Black Trees

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.

Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in red-black
tree code, we use a single sentinel to represent NIL (see page 262). For a red-black
tree T, the sentinel 7.nil is an object with the same attributes as an ordinary node
in the tree. Its color attribute is BLACK, and its other attributes— p, left, right,
and key—can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL
are replaced by pointers to the sentinel 7.nil.

Why use the sentinel? The sentinel makes it possible to treat a NIL child of a
node x as an ordinary node whose parent is x. An alternative design would use a
distinct sentinel node for each NIL in the tree, so that the parent of each NIL is well
defined. That approach needlessly wastes space, however. Instead, just the one
sentinel 7.nil represents all the NILs—all leaves and the root’s parent. The values
of the attributes p, left, right, and key of the sentinel are immaterial. The red-black
tree procedures can place whatever values in the sentinel that yield simpler code.

We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values. The remainder of this chapter omits the leaves in drawings
of red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any simple path from, but not including, a
node x down to a leaf the black-height of the node, denoted bh(x). By property 5,
the notion of black-height is well defined, since all descending simple paths from
the node have the same number of black nodes. The black-height of a red-black
tree is the black-height of its root.

The following lemma shows why red-black trees make good search trees.

Lemma 13.1
A red-black tree with n internal nodes has height at most 21g(n + 1).

Proof We start by showing that the subtree rooted at any node x contains at least
2%h() _ 1 internal nodes. We prove this claim by induction on the height of x. If
the height of x is 0, then x must be a leaf (7. nil), and the subtree rooted at x indeed
contains at least 2°"®) — 1 = 2° — 1 = 0 internal nodes. For the inductive step,
consider a node x that has positive height and is an internal node. Then node x
has two children, either or both of which may be a leaf. If a child is black, then
it contributes 1 to x’s black-height but not to its own. If a child is red, then it
contributes to neither x’s black-height nor its own. Therefore, each child has a
black-height of either bh(x) — 1 (if it’s black) or bh(x) (if it’s red). Since the
height of a child of x is less than the height of x itself, we can apply the inductive

13.1 Properties of red-black trees 333

el 26
e 17 41 ¥
2 @ 7y 21) 30 N 47
2 @l 1 @0 1 @B ¥ 23 1 @4 ¥ 38 NIL JINIL
1 N 12 1 @E NIL JNIL 1 @] NIL N1 NIl NIL 1 @RE] 1 @RLY
1ERD D D ¢D ¢ b NIL JlINIL NIL NI N NI
NIL JINIL @)

T.nil
(b)

Figure 13.1 A red-black tree. Every node in a red-black tree is either red or black, the children
of a red node are both black, and every simple path from a node to a descendant leaf contains the
same number of black nodes. (a) Every leaf, shown as a NIL, is black. Each non-NIL node is marked
with its black-height, where NILs have black-height 0. (b) The same red-black tree but with each NIL
replaced by the single sentinel 7. nil, which is always black, and with black-heights omitted. The
root’s parent is also the sentinel. (c¢) The same red-black tree but with leaves and the root’s parent
omitted entirely. The remainder of this chapter uses this drawing style.

334

Chapter 13 Red-Black Trees

hypothesis to conclude that each child has at least 2°">~! — 1 internal nodes. Thus,
the subtree rooted at x contains at least (22" =1 —1) 4 (2°h)=1 1) 41 = 20h0)
internal nodes, which proves the claim.

To complete the proof of the lemma, let / be the height of the tree. According
to property 4, at least half the nodes on any simple path from the root to a leaf, not
including the root, must be black. Consequently, the black-height of the root must
be at least /1/2, and thus,

n>2"r_1,

Moving the 1 to the left-hand side and taking logarithms on both sides yields
lg(n +1) > h/2,orh <2l1g(n + 1).]

As an immediate consequence of this lemma, each of the dynamic-set opera-
tions SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR runs
in O(lgn) time on a red-black tree, since each can run in O(h) time on a bi-
nary search tree of height / (as shown in Chapter 12) and any red-black tree on
n nodes is a binary search tree with height O(Ign). (Of course, references to NIL
in the algorithms of Chapter 12 have to be replaced by 7.nil.) Although the pro-
cedures TREE-INSERT and TREE-DELETE from Chapter 12 run in O(lgn) time
when given a red-black tree as input, you cannot just use them to implement the
dynamic-set operations INSERT and DELETE. They do not necessarily maintain
the red-black properties, so you might not end up with a legal red-black tree. The
remainder of this chapter shows how to insert into and delete from a red-black tree
in O(lgn) time.

Exercises

13.1-1

In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on
the keys {1,2,...,15}. Add the NIL leaves and color the nodes in three different
ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.

13.1-2

Draw the red-black tree that results after TREE-INSERT is called on the tree in
Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a
red-black tree? What if it is colored black?

13.1-3

Define a relaxed red-black tree as a binary search tree that satisfies red-black prop-
erties 1, 3,4, and 5, but whose root may be either red or black. Consider a relaxed
red-black tree 7" whose root is red. If the root of 7 is changed to black but no other
changes occur, is the resulting tree a red-black tree?

13.2 Rotations 335

13.1-4

Suppose that every black node in a red-black tree “absorbs™ all of its red children,
so that the children of any red node become children of the black parent. (Ignore
what happens to the keys.) What are the possible degrees of a black node after all
its red children are absorbed? What can you say about the depths of the leaves of
the resulting tree?

13.1-5

Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to a
descendant leaf.

13.1-6
What is the largest possible number of internal nodes in a red-black tree with black-
height £? What is the smallest possible number?

13.1-7

Describe a red-black tree on n keys that realizes the largest possible ratio of red in-
ternal nodes to black internal nodes. What is this ratio? What tree has the smallest
possible ratio, and what is the ratio?

13.1-8
Argue that in a red-black tree, a red node cannot have exactly one non-NIL child.

13.2 Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red-
black tree with n keys, take O(Ign) time. Because they modify the tree, the result
may violate the red-black properties enumerated in Section 13.1. To restore these
properties, colors and pointers within nodes need to change.

The pointer structure changes through rotation, which is a local operation in a
search tree that preserves the binary-search-tree property. Figure 13.2 shows the
two kinds of rotations: left rotations and right rotations. Let’s look at a left rotation
on a node x, which transforms the structure on the right side of the figure to the
structure on the left. Node x has a right child y, which must not be 7'.nil. The left
rotation changes the subtree originally rooted at x by “twisting” the link between x
and y to the left. The new root of the subtree is node y, with x as y’s left child and
y’s original left child (the subtree represented by B in the figure) as x’s right child.

The pseudocode for LEFT-ROTATE appearing on the following page assumes
that x.right # T.nil and that the root’s parent is 7.nil. Figure 13.3 shows an

336

Chapter 13 Red-Black Trees

) l . LEFT-ROTATE(T, X) . l
[y) 4 (x|

(x) Y > a (y)
N RIGHT-ROTATE(T, y) N
B

Figure 13.2 The rotation operations on a binary search tree. The operation L EFT-ROTATE(T, x)
transforms the configuration of the two nodes on the right into the configuration on the left by chang-
ing a constant number of pointers. The inverse operation RIGHT-ROTATE(T, y) transforms the con-
figuration on the left into the configuration on the right. The letters «, 8, and y represent arbitrary
subtrees. A rotation operation preserves the binary-search-tree property: the keys in « precede x.key,
which precedes the keys in 8, which precede y.key, which precedes the keys in y.

example of how LEFT-ROTATE modifies a binary search tree. The code for RIGHT-
ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-ROTATE run in O(1) time.
Only pointers are changed by a rotation, and all other attributes in a node remain
the same.

LEFT-ROTATE(T, x)

1y = x.right
2 x.right = y.left // turn y’s left subtree into x’s right subtree
3 if y.left # T.nil // if y’s left subtree is not empty ...
4 y.left.p = x // ... then x becomes the parent of the subtree’s root
5 y.p=x.p // x’s parent becomes y’s parent
6 ifx.p==T.nil // if x was the root ...
7 T.root =y // ... then y becomes the root
8 elseif x == x.p.left // otherwise, if x was a left child ...
9 x.p.left =y // ... then y becomes a left child
10 else x.p.right = y // otherwise, x was a right child, and now y is
11 y.left = x // make x become y’s left child
12 x.p=Yy
Exercises
13.2-1

Write pseudocode for RIGHT-ROTATE.

13.2 Rotations 337

LEFT-ROTATE(T, X)) : .

Figure 13.3 An example of how the procedure LEFT-ROTATE(7,, x) modifies a binary search tree.
Inorder tree walks of the input tree and the modified tree produce the same listing of key values.

13.2-2
Argue that in every n-node binary search tree, there are exactly n — 1 possible
rotations.

13.2-3

Let a, b, and ¢ be arbitrary nodes in subtrees «, B, and y, respectively, in the right
tree of Figure 13.2. How do the depths of a, b, and ¢ change when a left rotation
is performed on node x in the figure?

13.2-4

Show that any arbitrary n-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using O(n) rotations. (Hint: First show that at
most n — 1 right rotations suffice to transform the tree into a right-going chain.)

13.2-5

We say that a binary search tree 77 can be right-converted to binary search tree 7,
if it is possible to obtain 7, from 7; via a series of calls to RIGHT-ROTATE. Give
an example of two trees 77 and 75 such that 77 cannot be right-converted to 75.
Then, show that if a tree 7 can be right-converted to 75, it can be right-converted
using O(n?) calls to RIGHT-ROTATE.

338

Chapter 13 Red-Black Trees

13.3 Insertion

In order to insert a node into a red-black tree with n internal nodes in O(lgn) time
and maintain the red-black properties, we’ll need to slightly modify the TREE-
INSERT procedure on page 321. The procedure RB-INSERT starts by inserting
node z into the tree 7" as if it were an ordinary binary search tree, and then it col-
ors Z red. (Exercise 13.3-1 asks you to explain why to make node z red rather
than black.) To guarantee that the red-black properties are preserved, an auxiliary
procedure RB-INSERT-FIXUP on the facing page recolors nodes and performs ro-
tations. The call RB-INSERT(7, z) inserts node z, whose key is assumed to have
already been filled in, into the red-black tree 7 .

RB-INSERT(T, z)

1 x = T.root // node being compared with z

2y = T.nil // y will be parent of z

3 while x # T.nil // descend until reaching the sentinel

4 y=x

5 if z.key < x.key

6 x = x.left

7 else x = x.right

8 Zp=y // found the location—insert z with parent y
9 ify==T.nil

10 T.root = 7 // tree T was empty

11 elseif z.key < y.key

12 y.left = z

13 else y.right = z

14 z.left = T.nil // both of z’s children are the sentinel

15 z.right = T.nil

16 zZ.color = RED // the new node starts out red

17 RB-INSERT-FIXUP(T, z) // correct any violations of red-black properties

The procedures TREE-INSERT and RB-INSERT differ in four ways. First, all
instances of NIL in TREE-INSERT are replaced by 7.nil. Second, lines 14-15 of
RB-INSERT set z.left and z.right to T.nil, in order to maintain the proper tree
structure. (TREE-INSERT assumed that z’s children were already NIL.) Third,
line 16 colors z red. Fourth, because coloring z red may cause a violation of one
of the red-black properties, line 17 of RB-INSERT calls RB-INSERT-FIXUP(7, 7)
in order to restore the red-black properties.

13.3 Insertion 339

RB-INSERT-FIXUP(T, 2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

while z.p.color == RED

if z.p==2z.p.p.left // is 7’s parent a left child?
y = z.p.p.right // y is z7’s uncle
if y.color == RED // are z’s parent and uncle both red?

z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z =2z.p.p

case 1

else
if z ==z.p.right
zZ=2.p
LEFT-ROTATE(T, 2) } case 2
Z.p.color = BLACK
Z.p.p.color = RED } case 3
RIGHT-ROTATE(T, z.p.p)
else // same as lines 3—15, but with “right” and “left” exchanged
y = z.p.p.left
if y.color == RED
Z.p.color = BLACK
y.color = BLACK
Z.p.p.color = RED

Z = Z.p.p
else
if z ==z.p.left
Z =2Z.p

RIGHT-ROTATE(T, z)
z.p.color = BLACK
z.p.p.color = RED
LEFT-ROTATE(T, z.p.p)

T.root.color = BLACK

To understand how RB-INSERT-FIXUP works, let’s examine the code in three
major steps. First, we’ll determine which violations of the red-black properties
might arise in RB-INSERT upon inserting node z and coloring it red. Second, we’ll
consider the overall goal of the while loop in lines 1-29. Finally, we’ll explore each
of the three cases within the while loop’s body (case 2 falls through into case 3, so
these two cases are not mutually exclusive) and see how they accomplish the goal.

340

Chapter 13 Red-Black Trees

In describing the structure of a red-black tree, we’ll often need to refer to the
sibling of a node’s parent. We use the term uncle for such a node.! Figure 134
shows how RB-INSERT-FIXUP operates on a sample red-black tree, with cases
depending in part on the colors of a node, its parent, and its uncle.

What violations of the red-black properties might occur upon the call to
RB-INSERT-FIXUP? Property 1 certainly continues to hold (every node is either
red or black), as does property 3 (every leaf is black), since both children of the
newly inserted red node are the sentinel 7.nil. Property 5, which says that the
number of black nodes is the same on every simple path from a given node, is sat-
isfied as well, because node z replaces the (black) sentinel, and node z is red with
sentinel children. Thus, the only properties that might be violated are property 2,
which requires the root to be black, and property 4, which says that a red node
cannot have a red child. Both possible violations may arise because z is colored
red. Property 2 is violated if z is the root, and property 4 is violated if z’s parent
is red. Figure 13.4(a) shows a violation of property 4 after the node z has been
inserted.

The while loop of lines 1-29 has two symmetric possibilities: lines 3—15 deal
with the situation in which node z’s parent z.p is a left child of z’s grandpar-
ent Z.p.p, and lines 17-29 apply when z’s parent is a right child. Our proof will
focus only on lines 3-15, relying on the symmetry in lines 17-29.

We’ll show that the while loop maintains the following three-part invariant at
the start of each iteration of the loop:

a. Node z is red.
b. If z.p is the root, then z.p is black.

c. If the tree violates any of the red-black properties, then it violates at most
one of them, and the violation is of either property 2 or property 4, but
not both. If the tree violates property 2, it is because z is the root and is
red. If the tree violates property 4, it is because both z and z.p are red.

Part (c), which deals with violations of red-black properties, is more central to
showing that RB-INSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we’ll use along the way to understand situations in the code. Be-
cause we’ll be focusing on node z and nodes near it in the tree, it helps to know
from part (a) that z is red. Part (b) will help show that z’s grandparent z.p.p exists
when it’s referenced in lines 2, 3,7, 8, 14, and 15 (recall that we’re focusing only
on lines 3-15).

1 Although we try to avoid gendered language in this book, the English language lacks a gender-
neutral word for a parent’s sibling.

13.3 Insertion 341

(a)

(b)

(©)

(d)

Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node z after insertion. Because both z
and its parent z.p are red, a violation of property 4 occurs. Since z’s uncle y is red, case 1 in the code
applies. Node z’s grandparent z.p.p must be black, and its blackness transfers down one level to z’s
parent and uncle. Once the pointer z moves up two levels in the tree, the tree shown in (b) results.
Once again, z and its parent are both red, but this time z’s uncle y is black. Since z is the right child
of z.p, case 2 applies. Performing a left rotation results in the tree in (¢). Now z is the left child
of its parent, and case 3 applies. Recoloring and right rotation yield the tree in (d), which is a legal
red-black tree.

342

Chapter 13 Red-Black Trees

Recall that to use a loop invariant, we need to show that the invariant is true
upon entering the first iteration of the loop, that each iteration maintains it, that
the loop terminates, and that the loop invariant gives us a useful property at loop
termination. We’ll see that each iteration of the loop has two possible outcomes:
either the pointer z moves up the tree, or some rotations occur and then the loop
terminates.

Initialization: Before RB-INSERT is called, the red-black tree has no violations.
RB-INSERT adds a red node z and calls RB-INSERT-FixUP. We’ll show that
each part of the invariant holds at the time RB-INSERT-FIXUP is called:

a. When RB-INSERT-FIXUP is called, z is the red node that was added.

b. If z.p is the root, then z.p started out black and did not change before the
call of RB-INSERT-FIXUP.

c. We have already seen that properties 1, 3, and 5 hold when RB-INSERT-
FIXUP is called.

If the tree violates property 2 (the root must be black), then the red root
must be the newly added node z, which is the only internal node in the tree.
Because the parent and both children of z are the sentinel, which is black, the
tree does not also violate property 4 (both children of a red node are black).
Thus this violation of property 2 is the only violation of red-black properties
in the entire tree.

If the tree violates property 4, then, because the children of node z are black
sentinels and the tree had no other violations prior to z being added, the
violation must be because both z and z.p are red. Moreover, the tree violates
no other red-black properties.

Maintenance: There are six cases within the while loop, but we’ll examine only
the three cases in lines 3-15, when node z’s parent z.p is a left child of z’s
grandparent z.p.p. The proof for lines 17-29 is symmetric. The node z.p.p
exists, since by part (b) of the loop invariant, if z.p is the root, then z.p is
black. Since RB-INSERT-FIXUP enters a loop iteration only if z.p is red, we
know that z.p cannot be the root. Hence, z.p.p exists.

Case 1 differs from cases 2 and 3 by the color of z’s uncle y. Line 3 makes
y point to z’s uncle z.p.p.right, and line 4 tests y’s color. If y is red, then
case 1 executes. Otherwise, control passes to cases 2 and 3. In all three cases,
Z’s grandparent z.p.p is black, since its parent z.p is red, and property 4 is
violated only between z and z.p.

13.3 Insertion 343

Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP. Both z and its parent z.p are red, violat-
ing property 4. In case 1, z’s uncle y is red. The same action occurs regardless of whether (a) z is a
right child or (b) z is a left child. Each of the subtrees «, 8, y, 8, and ¢ has a black root—possibly
the sentinel —and each has the same black-height. The code for case 1 moves the blackness of z’s
grandparent down to z’s parent and uncle, preserving property 5: all downward simple paths from a
node to a leaf have the same number of blacks. The while loop continues with node z’s grandpar-
ent z.p.p as the new z. If the action of case 1 causes a new violation of property 4 to occur, it must
be only between the new z, which is red, and its parent, if it is red as well.

Case 1: 7’s uncle y is red

Figure 13.5 shows the situation for case 1 (lines 5-8), which occurs when
both z.p and y are red. Because z’s grandparent z.p.p is black, its blackness
can transfer down one level to both z.p and y, thereby fixing the problem of z
and z.p both being red. Having had its blackness transferred down one level,
Z’s grandparent becomes red, thereby maintaining property 5. The while loop
repeats with z.p.p as the new node z, so that the pointer z moves up two levels
in the tree.

Now, we show that case 1 maintains the loop invariant at the start of the next
iteration. We use z to denote node z in the current iteration, and 7z’ = Z.p.p
to denote the node that will be called node z at the test in line 1 upon the next
iteration.

a. Because this iteration colors z.p.p red, node z’ is red at the start of the next
iteration.

b. The node z'.p is Z.p.p.p in this iteration, and the color of this node does not
change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

344

Chapter 13 Red-Black Trees

_ > _ >
oy oy Z
a z z y a B y 0
B Y a B
Case 2 Case 3

Figure 13.6 Cases 2 and 3 of the procedure RB-INSERT-FIXUP. As in case 1, property 4 is violated
in either case 2 or case 3 because z and its parent z.p are both red. Each of the subtrees «, 8, y,
and § has a black root («, 8, and y from property 4, and § because otherwise case 1 would apply),
and each has the same black-height. Case 2 transforms into case 3 by a left rotation, which preserves
property 5: all downward simple paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

c. We have already argued that case 1 maintains property 5, and it does not
introduce a violation of properties 1 or 3.
If node 7’ is the root at the start of the next iteration, then case 1 corrected
the lone violation of property 4 in this iteration. Since z’ is red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to 7'.
If node 7’ is not the root at the start of the next iteration, then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
of property 4 that existed at the start of this iteration. It then made z’ red
and left z’.p alone. If z'.p was black, there is no violation of property 4.
If z'.p was red, coloring 7z’ red created one violation of property 4, between z’
and 7. p.

Case 2: 7’s uncle y is black and z is a right child
Case 3: 7’s uncle y is black and z is a left child

In cases 2 and 3, the color of z’s uncle y is black. We distinguish the two cases,
which assume that z’s parent z.p is red and a left child, according to whether z
is a right or left child of z.p. Lines 11-12 constitute case 2, which is shown in
Figure 13.6 together with case 3. In case 2, node z is a right child of its parent.
A left rotation immediately transforms the situation into case 3 (lines 13—15), in
which node z is a left child. Because both z and z.p are red, the rotation affects
neither the black-heights of nodes nor property 5. Whether case 3 executes
directly or through case 2, z’s uncle y is black, since otherwise case 1 would
have run. Additionally, the node z.p.p exists, since we have argued that this

13.3 Insertion 345

node existed at the time that lines 2 and 3 were executed, and after moving z
up one level in line 11 and then down one level in line 12, the identity of z.p.p
remains unchanged. Case 3 performs some color changes and a right rotation,
which preserve property 5. At this point, there are no longer two red nodes in
a row. The while loop terminates upon the next test in line 1, since z.p is now
black.

We now show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, z.p will be black upon the next test in line 1, and the loop body will not
execute again.)

a. Case 2 makes z point to z.p, which is red. No further change to z or its color
occurs in cases 2 and 3.

b. Case 3 makes z.p black, so that if z.p is the root at the start of the next
iteration, it is black.

c. As in case 1, properties 1, 3, and 5 are maintained in cases 2 and 3.

Since node z is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.

Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation.

Termination: To see that the loop terminates, observe that if only case 1 occurs,
then the node pointer z moves toward the root in each iteration, so that eventu-
ally z.p is black. (If z is the root, then z.p is the sentinel 7. nil, which is black.)
If either case 2 or case 3 occurs, then we’ve seen that the loop terminates. Since
the loop terminates because z.p is black, the tree does not violate property 4
at loop termination. By the loop invariant, the only property that might fail to
hold is property 2. Line 30 restores this property by coloring the root black, so
that when RB-INSERT-FIXUP terminates, all the red-black properties hold.

Thus, we have shown that RB-INSERT-FIXUP correctly restores the red-black
properties.

Analysis

What is the running time of RB-INSERT? Since the height of a red-black tree on n
nodes is O(lgn), lines 1-16 of RB-INSERT take O(lgn) time. In RB-INSERT-
F1xup, the while loop repeats only if case 1 occurs, and then the pointer z moves
two levels up the tree. The total number of times the while loop can be executed
is therefore O(lgn). Thus, RB-INSERT takes a total of O(lgn) time. Moreover, it

346

Chapter 13 Red-Black Trees

never performs more than two rotations, since the while loop terminates if case 2
or case 3 is executed.

Exercises

13.3-1

Line 16 of RB-INSERT sets the color of the newly inserted node z to red. If in-
stead z’s color were set to black, then property 4 of a red-black tree would not be
violated. Why not set z’s color to black?

13.3-2
Show the red-black trees that result after successively inserting the keys 41, 38, 31,
12,19, 8 into an initially empty red-black tree.

13.3-3

Suppose that the black-height of each of the subtrees «, 8, v, 8, ¢ in Figures 13.5
and 13.6 is k. Label each node in each figure with its black-height to verify that
the indicated transformation preserves property 5.

1334

Professor Teach is concerned that RB-INSERT-FIXUP might set 7.nil.color to
RED, in which case the test in line 1 would not cause the loop to terminate when z
is the root. Show that the professor’s concern is unfounded by arguing that RB-
INSERT-FIXUP never sets T.nil.color to RED.

13.3-5
Consider a red-black tree formed by inserting n nodes with RB-INSERT. Argue
that if n > 1, the tree has at least one red node.

13.3-6
Suggest how to implement RB-INSERT efficiently if the representation for red-
black trees includes no storage for parent pointers.

13.4 Deletion

Like the other basic operations on an n-node red-black tree, deletion of a node
takes O(lgn) time. Deleting a node from a red-black tree is more complicated
than inserting a node.

The procedure for deleting a node from a red-black tree is based on the TREE-
DELETE procedure on page 325. First, we need to customize the TRANSPLANT

134 Deletion 347

subroutine on page 324 that TREE-DELETE calls so that it applies to a red-black
tree. Like TRANSPLANT, the new procedure RB-TRANSPLANT replaces the sub-
tree rooted at node u by the subtree rooted at node v. The RB-TRANSPLANT pro-
cedure differs from TRANSPLANT in two ways. First, line 1 references the sentinel
T.nil instead of NIL. Second, the assignment to v.p in line 6 occurs uncondition-
ally: the procedure can assign to v.p even if v points to the sentinel. We’ll take
advantage of the ability to assign to v.p when v = T.nil.

RB-TRANSPLANT(T, u, v)

1 ifu.p=="T.nil

2 T.root = v

3 elseif u == u.p.left
4 u.p.left = v
5 elseu.p.right = v
6 V.p=u.p

The procedure RB-DELETE on the next page is like the TREE-DELETE proce-
dure, but with additional lines of pseudocode. The additional lines deal with nodes
x and y that may be involved in violations of the red-black properties. When the
node z being deleted has at most one child, then y will be z. When z has two
children, then, as in TREE-DELETE, y will be z’s successor, which has no left
child and moves into z’s position in the tree. Additionally, y takes on z’s color.
In either case, node y has at most one child: node x, which takes y’s place in the
tree. (Node x will be the sentinel T.nil if y has no children.) Since node y will
be either removed from the tree or moved within the tree, the procedure needs to
keep track of y’s original color. If the red-black properties might be violated after
deleting node z, RB-DELETE calls the auxiliary procedure RB-DELETE-FIXUP,
which changes colors and performs rotations to restore the red-black properties.

Although RB-DELETE contains almost twice as many lines of pseudocode as
TREE-DELETE, the two procedures have the same basic structure. You can find
each line of TREE-DELETE within RB-DELETE (with the changes of replacing
NIL by T.nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT),
executed under the same conditions.

In detail, here are the other differences between the two procedures:

* Lines 1 and 9 set node y as described above: line 1 when node z has at most
one child and line 9 when z has two children.

* Because node y’s color might change, the variable y-original-color stores y’s
color before any changes occur. Lines 2 and 10 set this variable immediately
after assignments to y. When node z has two children, then nodes y and z are

348

Chapter 13 Red-Black Trees

RB-DELETE(T, z)

O 0 39 N Lt AW N =

S I NS T S T e e e T e T e T S e S = S =y
N = O O 0 9 N L AW = O

y =z
y-original-color = y.color
if z.left == T.nil
X = z.right
RB-TRANSPLANT(T, z, z.right) // replace z by its right child
elseif z.right == T.nil
x = z.left
RB-TRANSPLANT(T, z, z.left) // replace z by its left child
else y = TREE-MINIMUM (z.right) // y is z’s successor
y-original-color = y.color
X = y.right
if y # z.right // is y farther down the tree?
RB-TRANSPLANT(T, y, y.right) // replace y by its right child
y.right = z.right // z’s right child becomes
y.right.p =y / y’s right child
elsex.p =y // in case x is T.nil
RB-TRANSPLANT(T, zZ, y) // replace z by its successor y
y.left = z.left // and give z’s left child to y,
y.left.p =y / which had no left child
y.color = z.color
if y-original-color == BLACK // if any red-black violations occurred,
RB-DELETE-FIXUP(T, x) / correct them

distinct. In this case, line 17 moves y into z’s original position in the tree (that
is, z’s location in the tree at the time RB-DELETE was called), and line 20 gives
y the same color as z. When node y was originally black, removing or moving
it could cause violations of the red-black properties, which are corrected by the
call of RB-DELETE-FIXUP in line 22.

As discussed, the procedure keeps track of the node x that moves into node y’s
original position at the time of call. The assignments in lines 4, 7, and 11 set x
to point to either y’s only child or, if y has no children, the sentinel 7. nil.

Since node x moves into node y’s original position, the attribute x.p must be set
correctly. If node z has two children and y is z’s right child, then y just moves
into z’s position, with x remaining a child of y. Line 12 checks for this case.
Although you might think that setting x.p to y in line 16 is unnecessary since
x is a child of y, the call of RB-DELETE-FIXUP relies on x.p being y even if
x is T.nil. Thus, when z has two children and y is z’s right child, executing

134 Deletion 349

line 16 is necessary if y’s right child is 7.nil, and otherwise it does not change
anything.

Otherwise, node z is either the same as node y or it is a proper ancestor of
y’s original parent. In these cases, the calls of RB-TRANSPLANT in lines 5,
8, and 13 set x.p correctly in line 6 of RB-TRANSPLANT. (In these calls of
RB-TRANSPLANT, the third parameter passed is the same as x.)

* Finally, if node y was black, one or more violations of the red-black properties
might arise. The call of RB-DELETE-FIXUP in line 22 restores the red-black
properties. If y was red, the red-black properties still hold when y is removed
or moved, for the following reasons:

1. No black-heights in the tree have changed. (See Exercise 13.4-1.)

2. No red nodes have been made adjacent. If z has at most one child, then y
and z are the same node. That node is removed, with a child taking its place.
If the removed node was red, then neither its parent nor its children can also
be red, so moving a child to take its place cannot cause two red nodes to
become adjacent. If, on the other hand, z has two children, then y takes z’s
place in the tree, along with z’s color, so there cannot be two adjacent red
nodes at y’s new position in the tree. In addition, if y was not z’s right child,
then y’s original right child x replaces y in the tree. Since y is red, x must
be black, and so replacing y by x cannot cause two red nodes to become
adjacent.

3. Because y could not have been the root if it was red, the root remains black.

If node y was black, three problems may arise, which the call of RB-DELETE-
Fixup will remedy. First, if y was the root and a red child of y became the new
root, property 2 is violated. Second, if both x and its new parent are red, then a
violation of property 4 occurs. Third, moving y within the tree causes any simple
path that previously contained y to have one less black node. Thus, property 5 is
now violated by any ancestor of y in the tree. We can correct the violation of prop-
erty 5 by saying that when the black node y is removed or moved, its blackness
transfers to the node x that moves into y’s original position, giving x an “extra”
black. That is, if we add 1 to the count of black nodes on any simple path that con-
tains x, then under this interpretation, property 5 holds. But now another problem
emerges: node x is neither red nor black, thereby violating property 1. Instead,
node x is either “doubly black” or “red-and-black,” and it contributes either 2 or 1,
respectively, to the count of black nodes on simple paths containing x. The color
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is dou-
bly black). In other words, the extra black on a node is reflected in x’s pointing to
the node rather than in the color attribute.

350

Chapter 13 Red-Black Trees

The procedure RB-DELETE-FIXUP on the next page restores properties 1, 2,
and 4. Exercises 13.4-2 and 13.4-3 ask you to show that the procedure restores
properties 2 and 4, and so in the remainder of this section, we focus on property 1.
The goal of the while loop in lines 1-43 is to move the extra black up the tree until

1. x points to a red-and-black node, in which case line 44 colors x (singly) black;
2. Xx points to the root, in which case the extra black simply vanishes; or

3. having performed suitable rotations and recolorings, the loop exits.

Like RB-INSERT-FIXUP, the RB-DELETE-FIXUP procedure handles two sym-
metric situations: lines 3-22 for when node x is a left child, and lines 24-43 for
when x is a right child. Our proof focuses on the four cases shown in lines 3-22.
Within the while loop, x always points to a nonroot doubly black node. Line 2
determines whether x is a left child or a right child of its parent x.p so that either
lines 3-22 or 24-43 will execute in a given iteration. The sibling of x is always
denoted by a pointer w. Since node x is doubly black, node w cannot be T.nil,
because otherwise, the number of blacks on the simple path from x.p to the (singly
black) leaf w would be smaller than the number on the simple path from x.p to x.
Recall that the RB-DELETE procedure always assigns to x.p before calling RB-
DELETE-FIXUP (either within the call of RB-TRANSPLANT in line 13 or the as-
signment in line 16), even when node x is the sentinel 7.nil. That is because
RB-DELETE-FIXUP references x’s parent x.p in several places, and this attribute
must point to the node that became x’s parent in RB-DELETE—even if x is 7.nil.
Figure 13.7 demonstrates the four cases in the code when node x is a left child.
(As in RB-INSERT-FIXUP, the cases in RB-DELETE-FIXUP are not mutually ex-
clusive.) Before examining each case in detail, let’s look more generally at how
we can verify that the transformation in each of the cases preserves property 5.
The key idea is that in each case, the transformation applied preserves the num-
ber of black nodes (including x’s extra black) from (and including) the root of the
subtree shown to the roots of each of the subtrees «, B, ..., . Thus, if property 5
holds prior to the transformation, it continues to hold afterward. For example, in
Figure 13.7(a), which illustrates case 1, the number of black nodes from the root
to the root of either subtree « or f is 3, both before and after the transformation.
(Again, remember that node x adds an extra black.) Similarly, the number of black
nodes from the root to the root of any of y, §, ¢, and ¢ is 2, both before and after
the transformation.? In Figure 13.7(b), the counting must involve the value ¢ of the
color attribute of the root of the subtree shown, which can be either RED or BLACK.

2qf property 5 holds, we can assume that paths from the roots of y, §, €, and ¢ down to leaves contain
one more black than do paths from the roots of « and 8 down to leaves.

134 Deletion

RB-DELETE-FIXUP(T7, x)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

while x # T.root and x.color == BLACK

if x == x.p.left // is x a left child?
w = x.p.right // w is x’s sibling
if w.color == RED
w.color = BLACK
Xx.p.color = RED
LEFT-ROTATE(T, x.p)
w = Xx.p.right
if w.left.color == BLACK and w.right.color == BLACK
w.color = RED
X = X.p
else
if w.right.color == BLACK
w. left.color = BLACK
w.color = RED
RIGHT-ROTATE (T, w)
w = x.p.right
w.color = x.p.color
Xx.p.color = BLACK
w.right.color = BLACK case 4
LEFT-ROTATE(T, x.p)
x = T.root
else // same as lines 3-22, but with “right” and “left” exchanged
w = x.p.left
if w.color == RED
w.color = BLACK
Xx.p.color = RED
RIGHT-ROTATE(T, x.p)
w = x.p.left
if w.right.color == BLACK and w. left.color == BLACK
w.color = RED
X = X.p
else
if w.left.color == BLACK
w.right.color = BLACK
w.color = RED
LEFT-ROTATE (T, w)
w = x.p.left
w.color = x.p.color
Xx.p.color = BLACK
w.left.color = BLACK
RIGHT-ROTATE(T, x.p)
x = T.root

case 1

case 2

case 3

44 x.color = BLACK

351

352

()

(b)

(©)

(d)

Chapter 13 Red-Black Trees

Case 1

Case 2

Case 3

Case 4

a B y 10 new x = T.root

Figure 13.7 The cases in lines 3-22 of the procedure RB-DELETE-FIXUP. Brown nodes have
color attributes represented by ¢ and ¢’, which may be either RED or BLACK. The letters o, B, ..., ¢
represent arbitrary subtrees. Each case transforms the configuration on the left into the configuration
on the right by changing some colors and/or performing a rotation. Any node pointed to by x has
an extra black and is either doubly black or red-and-black. Only case 2 causes the loop to repeat.
(a) Case 1 is transformed into case 2, 3, or 4 by exchanging the colors of nodes B and D and
performing a left rotation. (b) In case 2, the extra black represented by the pointer x moves up the
tree by coloring node D red and setting x to point to node B. If case 2 is entered through case 1, the
while loop terminates because the new node x is red-and-black, and therefore the value ¢ of its color
attribute is RED. (c¢) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D and
performing a right rotation. (d) Case 4 removes the extra black represented by x by changing some
colors and performing a left rotation (without violating the red-black properties), and then the loop
terminates.

134 Deletion 353

If we define count(RED) = 0 and count(BLACK) = 1, then the number of black
nodes from the root to « is 2 4 count(c), both before and after the transformation.
In this case, after the transformation, the new node x has color attribute ¢, but this
node is really either red-and-black (if ¢ = RED) or doubly black (if ¢ = BLACK).
You can verify the other cases similarly (see Exercise 13.4-6).

Case 1: x’s sibling w is red

Case 1 (lines 5-8 and Figure 13.7(a)) occurs when node w, the sibling of node x,
is red. Because w is red, it must have black children. This case switches the colors
of w and x.p and then performs a left-rotation on x.p without violating any of the
red-black properties. The new sibling of x, which is one of w’s children prior to
the rotation, is now black, and thus case 1 converts into one of cases 2, 3, or 4.

Cases 2, 3, and 4 occur when node w is black and are distinguished by the colors
of w’s children.

Case 2: x’s sibling w is black, and both of w’s children are black

In case 2 (lines 10—11 and Figure 13.7(b)), both of w’s children are black. Since w
is also black, this case removes one black from both x and w, leaving x with only
one black and leaving w red. To compensate for x and w each losing one black,
X’s parent x.p can take on an extra black. Line 11 does so by moving x up one
level, so that the while loop repeats with x.p as the new node x. If case 2 enters
through case 1, the new node x is red-and-black, since the original x.p was red.
Hence, the value ¢ of the color attribute of the new node x is RED, and the loop
terminates when it tests the loop condition. Line 44 then colors the new node x
(singly) black.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black
Case 3 (lines 14—17 and Figure 13.7(c)) occurs when w is black, its left child is
red, and its right child is black. This case switches the colors of w and its left
child w.left and then performs a right rotation on w without violating any of the
red-black properties. The new sibling w of x is now a black node with a red right
child, and thus case 3 falls through into case 4.

Case 4: x’s sibling w is black, and w’s right child is red

Case 4 (lines 18-22 and Figure 13.7(d)) occurs when node x’s sibling w is black
and w’s right child is red. Some color changes and a left rotation on x.p allow
the extra black on x to vanish, making it singly black, without violating any of the
red-black properties. Line 22 sets x to be the root, and the while loop terminates
when it next tests the loop condition.

354

Chapter 13 Red-Black Trees

Analysis

What is the running time of RB-DELETE? Since the height of a red-black tree of n
nodes is O(lgn), the total cost of the procedure without the call to RB-DELETE-
Fixup takes O(lgn) time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4
lead to termination after performing a constant number of color changes and at
most three rotations. Case 2 is the only case in which the while loop can be re-
peated, and then the pointer x moves up the tree at most O(lgn) times, performing
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O(lgn) time and per-
forms at most three rotations, and the overall time for RB-DELETE is therefore
also O(lgn).

Exercises

13.4-1
Show that if node y in RB-DELETE is red, then no black-heights change.

134-2
Argue that after RB-DELETE-FIXUP executes, the root of the tree must be black.

134-3
Argue that if in RB-DELETE both x and x.p are red, then property 4 is restored by
the call to RB-DELETE-FIXUP(T, x).

13.4-4

In Exercise 13.3-2 on page 346, you found the red-black tree that results from suc-
cessively inserting the keys 41,38,31,12,19, 8 into an initially empty tree. Now
show the red-black trees that result from the successive deletion of the keys in the
order 8,12,19,31,38,41.

13.4-5
Which lines of the code for RB-DELETE-FIXUP might examine or modify the
sentinel 7.nil?

134-6
In each of the cases of Figure 13.7, give the count of black nodes from the root of
the subtree shown to the roots of each of the subtrees «, B, ..., ¢, and verify that

each count remains the same after the transformation. When a node has a color
attribute ¢ or ¢’, use the notation count(c) or count(c’) symbolically in your count.

134-7
Professors Skelton and Baron worry that at the start of case 1 of RB-DELETE-
FIXUP, the node x.p might not be black. If x.p is not black, then lines 5-6 are

Problems for Chapter 13 355

wrong. Show that x.p must be black at the start of case 1, so that the professors
need not be concerned.

13.4-8

A node x is inserted into a red-black tree with RB-INSERT and then is immediately
deleted with RB-DELETE. Is the resulting red-black tree always the same as the
initial red-black tree? Justify your answer.

13.4-9

Consider the operation RB-ENUMERATE(T, r,a, b), which outputs all the keys k
such that ¢ < k < b in a subtree rooted at node r in an n-node red-black tree T'.
Describe how to implement RB-ENUMERATE in ®(m + Ign) time, where m is
the number of keys that are output. Assume that the keys in 7" are unique and that
the values a and b appear as keys in 7. How does your solution change if a and b
might not appear in 7'?

Problems

13-1 Persistent dynamic sets

During the course of an algorithm, you sometimes find that you need to maintain
past versions of a dynamic set as it is updated. We call such a set persistent. One
way to implement a persistent set is to copy the entire set whenever it is modi-
fied, but this approach can slow down a program and also consume a lot of space.
Sometimes, you can do much better.

Consider a persistent set S with the operations INSERT, DELETE, and SEARCH,
which you implement using binary search trees as shown in Figure 13.8(a). Main-
tain a separate root for every version of the set. In order to insert the key 5 into the
set, create a new node with key 5. This node becomes the left child of a new node
with key 7, since you cannot modify the existing node with key 7. Similarly, the
new node with key 7 becomes the left child of a new node with key 8 whose right
child is the existing node with key 10. The new node with key 8 becomes, in turn,
the right child of a new root r’ with key 4 whose left child is the existing node with
key 3. Thus, you copy only part of the tree and share some of the nodes with the
original tree, as shown in Figure 13.8(b).

Assume that each tree node has the attributes key, left, and right but no parent.
(See also Exercise 13.3-6 on page 346.)

a. For a persistent binary search tree (not a red-black tree, just a binary search
tree), identify the nodes that need to change to insert or delete a node.

356

Chapter 13 Red-Black Trees

N)

r(4)

I\

10) 2)

(W)
oo)

~

(a) (b)

Figure 13.8 (a) A binary search tree with keys 2,3,4,7,8,10. (b) The persistent binary search
tree that results from the insertion of key 5. The most recent version of the set consists of the nodes
reachable from the root 7/, and the previous version consists of the nodes reachable from r. Blue
nodes are added when key 5 is inserted.

b.

Write a procedure PERSISTENT-TREE-INSERT(7, z) that, given a persistent
binary search tree 7 and a node z to insert, returns a new persistent tree 7"’
that is the result of inserting z into 7. Assume that you have a procedure
CorY-NODE(x) that makes a copy of node x, including all of its attributes.

If the height of the persistent binary search tree 7" is &, what are the time and
space requirements of your implementation of PERSISTENT-TREE-INSERT?
(The space requirement is proportional to the number of nodes that are copied.)

Suppose that you include the parent attribute in each node. In this case, the
PERSISTENT-TREE-INSERT procedure needs to perform additional copying.
Prove that PERSISTENT-TREE-INSERT then requires €2(n) time and space,
where 7 is the number of nodes in the tree.

Show how to use red-black trees to guarantee that the worst-case running time
and space are O(lgn) per insertion or deletion. You may assume that all keys
are distinct.

13-2 Join operation on red-black trees

The join operation takes two dynamic sets S; and S, and an element x such that
for any x; € S; and x, € S,, we have x;.key < x.key < x,.key. It returns a set
S = S1 U {x}US,. In this problem, we investigate how to implement the join
operation on red-black trees.

a.

Suppose that you store the black-height of a red-black tree T as the new at-
tribute 7.bh. Argue that RB-INSERT and RB-DELETE can maintain the bh

Problems for Chapter 13 357

attribute without requiring extra storage in the nodes of the tree and without
increasing the asymptotic running times. Show how to determine the black-
height of each node visited while descending through 7', using O(1) time per
node visited.

Let 71 and T, be red-black trees and x be a key value such that for any nodes
x1 in 77 and x, in 75, we have x;.key < x.key < Xx,.key. You will show how
to implement the operation RB-JOIN(77, x, T5), which destroys 77 and 7, and
returns a red-black tree T = T; U {x} U T,. Let n be the total number of nodes in
T) and T.

b. Assume that Ty.bh > T,.bh. Describe an O(lgn)-time algorithm that finds a
black node y in 7; with the largest key from among those nodes whose black-
height is 75.bh.

c. Let T} be the subtree rooted at y. Describe how T, U {x} U T, can replace T,
in O(1) time without destroying the binary-search-tree property.

d. What color should you make x so that red-black properties 1, 3, and 5 are
maintained? Describe how to enforce properties 2 and 4 in O(lgn) time.

e. Argue that no generality is lost by making the assumption in part (b). Describe
the symmetric situation that arises when 7.bh < T,.bh.

Jf- Argue that the running time of RB-JOIN is O(Ign).

13-3 AVL trees

An AVL tree is a binary search tree that is height balanced: for each node x, the
heights of the left and right subtrees of x differ by at most 1. To implement an
AVL tree, maintain an extra attribute 4 in each node such that x.# is the height of
node x. As for any other binary search tree 7', assume that 7. root points to the root
node.

a. Prove that an AVL tree with n nodes has height O(lgn). (Hint: Prove that
an AVL tree of height / has at least Fj, nodes, where Fj, is the hth Fibonacci
number.)

b. To insert into an AVL tree, first place a node into the appropriate place in bi-
nary search tree order. Afterward, the tree might no longer be height balanced.
Specifically, the heights of the left and right children of some node might differ
by 2. Describe a procedure BALANCE(x), which takes a subtree rooted at x
whose left and right children are height balanced and have heights that differ

358

Chapter 13 Red-Black Trees

by at most 2, so that |x.right.h — x.left.h| < 2, and alters the subtree rooted
at x to be height balanced. The procedure should return a pointer to the node
that is the root of the subtree after alterations occur. (Hint: Use rotations.)

¢. Using part (b), describe a recursive procedure AVL-INSERT(7,z) that takes
an AVL tree T and a newly created node z (whose key has already been filled
in), and adds z into 7', maintaining the property that 7" is an AVL tree. As in
TREE-INSERT from Section 12.3, assume that z.key has already been filled in
and that z./left = NIL and z.right = NIL. Assume as well that z.h = 0.

d. Show that AVL-INSERT, run on an n-node AVL tree, takes O(lgn) time and
performs O(lgn) rotations.

Chapter notes

The idea of balancing a search tree is due to Adel’son-Vel’skii and Landis [2], who
introduced a class of balanced search trees called “AVL trees” in 1962, described in
Problem 13-3. Another class of search trees, called “2-3 trees,” was introduced by
J. E. Hopcroft (unpublished) in 1970. A 2-3 tree maintains balance by manipulating
the degrees of nodes in the tree, where each node has either two or three children.
Chapter 18 covers a generalization of 2-3 trees introduced by Bayer and McCreight
[39], called “B-trees.”

Red-black trees were invented by Bayer [38] under the name “symmetric binary
B-trees.” Guibas and Sedgewick [202] studied their properties at length and in-
troduced the red/black color convention. Andersson [16] gives a simpler-to-code
variant of red-black trees. Weiss [451] calls this variant AA-trees. An AA-tree is
similar to a red-black tree except that left children can never be red.

Sedgewick and Wayne [402] present red-black trees as a modified version of 2-3
trees in which a node with three children is split into two nodes with two children
each. One of these nodes becomes the left child of the other, and only left children
can be red. They call this structure a “left-leaning red-black binary search tree.”
Although the code for left-leaning red-black binary search trees is more concise
than the red-black tree pseudocode in this chapter, operations on left-leaning red-
black binary search trees do not limit the number of rotations per operation to a
constant. This distinction will matter in Chapter 17.

Treaps, a hybrid of binary search trees and heaps, were proposed by Seidel and
Aragon [404]. They are the default implementation of a dictionary in LEDA [324],
which is a well-implemented collection of data structures and algorithms.

There are many other variations on balanced binary trees, including weight-
balanced trees [344], k-neighbor trees [318], and scapegoat trees [174]. Perhaps

Notes for Chapter 13 359

the most intriguing are the “splay trees” introduced by Sleator and Tarjan [418],
which are “self-adjusting.” (See Tarjan [429] for a good description of splay trees.)
Splay trees maintain balance without any explicit balance condition such as color.
Instead, “splay operations” (which involve rotations) are performed within the tree
every time an access is made. The amortized cost (see Chapter 16) of each oper-
ation on an n-node tree is O(lgn). Splay trees have been conjectured to perform
within a constant factor of the best offline rotation-based tree. The best known
competitive ratio (see Chapter 27) for a rotation-based tree is the Tango Tree of
Demaine et al. [109].

Skip lists [369] provide an alternative to balanced binary trees. A skip list is a
linked list that is augmented with a number of additional pointers. Each dictionary
operation runs in O(Ign) expected time on a skip list of n items.

